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The article presents a quantitative description of the process of slow thinning 
of a thread of polymer solution taking the molecular structure into account. 

The present article explains in extended version the results of the theoretical analysis 
of the formation of thin stable threads of polymer solutions, annotated by Bazilevskii et al. 
[i]. Such threads form when a drop of polymer solution isdrawn out between two plates [i], 
when a jet of polymer solution undergoes capillary breakup [I, 2], etc. One of these cases 
is shown in Fig. I. 

It was shown in [i, 3] that the fact of thin stable threads existing indicates that poly- 
mer solutions are able to develop considerable resistance to the process of intense exten- 
sion; this corresponds to an increase of Trouton (longitudinal) viscosity by several orders 
of magnitude compared with the shear viscosity of these solutions. This is in agreement with 
the results of the experimental works [4-6], which contain an evaluation of the stresses 
arising in intense tensioning of polymer solutions. These effects are explained by the ori- 
entation of the macromolecules in the direction of tension, which impedes the flow of the 
surrounding medium around them [i, 7]. 

Below we present the quantitative investigation of the phenomenon of formation of thin 
threads within the framework of the molecular hydrodynamic model of dilute polymer solutions 
suggested by Hinch [7], which is able to describe the appearance of considerable stresses un- 
der conditions of intense tension. This model is described by the equations 

<zz>=(<zz>.f~--f~./~zz>)q-3z~q_z z (<zz>.E-I-E. <zz>) --2L <zz>--  (1) 

( z~ ) Nb <zz> " 
~ = - -  p6  -}- 2~o l + 5nz~ 3z~ _~ z z E -+- n• Nb----~ z (2) 

Fig. i. Thread of polyoxyethylene 
in water formed by extending a drop 
of solution by tweezers. (Distance 
between the jaws of the tweezers ap- 
proximately 5 mm.) 
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Fig. 2. Model of the thread. 

For the case of uniform thinning of the thread, the tensors ~ and E have the form (the 
system of coordinates x~, x2, x~ is shown in Fig. 2): 

f~=O, E =  

2 dr  

r d t  

1 dr  

r d t  

1 dr  

r dt  

Let us examine the flow of polymer solution in the thread when the orientation of the macro- 
molecules has become considerable: 

zZ/z~ ~ 1. (3) 

Since the liquid is being extended along the 0x~ axis, the macromolecules also become ori- 
ented along this axis 

< z z  > = z~ 0 

It is obvious that under the given conditions the stress tensor o has a diagonal structure, 
and its components ~22 and 033 are equal to the capillary pressure ~/r with the opposite 
sign. 

When the behavior of the liquid in the thread has become largely non-Newtonian (i.e., in 
Eq. (2) the term 2~0(i + 5nz~)Eii, describing the influence of Newtonian viscosity is small 
compared with the other terms of the sum), all that has been said above enables us to repre- 
sent the system of equations (i), (2) in the form 

Z 2 
0. --p+~ ...... , (4) 

I--Z 

(}'22 ~ 0 " 3 3  ~ - -  P "-: - - -  C,Q"F, (5) 

d Z  >~Zt~ 
- -  Z E l l  , ( 6 )  

d t  1 - -  Z 

E l l  - -  
2 dr  v (l) 

r d {  7 ' (7) 

where Z= z/(Nb) (i.eo, N-I/2~Z~I), ~=n• v(1) is the speed of the liquid at the point 
xl = I in the coordinate system xl, x=, xs. 

Since the disintegration of a thread of polymer solution proceeds much more slowly than 
the purely inertial disintegration of a thread of water, it is natural to assume that the 
forces of inertia in the problem under examination are not substantial. In that case the 
thread is homogeneous, and o~: is constant along the entire thread. The value of o~ is de- 
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termined by processes occurring at the borders of the thread. The liquid extruded from the 
thread emerges in a region (henceforth called macrovolumes) that has characteristic dimen- 

sions considerably exceeding the radius of the thread; in these regions the tensile strain 
to which the elements of the liquid are subjected in the thread is replaced by compressive 
strain along the flow line (the flow is of a nature that is close to radial). 

If the liquid is able to manifest considerable excess stresses only under conditions of 
intense tension, then these stresses are instantaneously relaxed at the point where the tvDe 
of strain changes (i.e., at the border of the thread), and o11= 0. This condition, in particular, 
was adopted in [i, 3] in the evaluation of the longitudinal viscosity of polymer solutions 

upon deformation in the thread. In this case viscosity was determined as Ltz=-- -- 
' r 7 ; 

it was found to be several orders of magnitude larger than the initial shear viscosity. 

If, upon flow in a macrovolume, i.e., under conditions of compressive strain, consider- 
able excess stresses manifest themselves in a liquid, o:: may be nonzero. To find o~: in 
this case, we examine flow in a macrovolume. The equations of motion and continuity, written 
in the cylindrical coordinates x, y, 0 (Fig. 2, x = x~--l) with a view to the axisymmetry of 
the problem, have the form [8] (without loss of generality we examine the macrovolume situa- 

ted in the region x: > 0) 

( &,,~ 0v,:,. + v,~ ~ - + (~;~) § - - v - - ,  (8) 
P \ Ot i -v ,v  Oy Ox ] c)x g Oj ax �9 

1 O Ov,~ 
-- -- (gv.u) + -- O, (9) 

g Og Ox 

where rxx and Ty x are the excess stress components, and v - and v - are the components of the 

. ~ x  ,y O. flow velocity of the liquid in a macrovolume in the cooraznate system x, y, 

Let us examine the motion occurring near the axis of symmetry of the macrovolume, where 
the liquid undergoes uniaxial compression and the macromolecules relax. Taking it that the 
macromolecules are oriented along the flow line, and that the excess stress is due solely to 
the tension of the macromolecules, we can easily confirm with the aid of Eq. (2) that the 
only nonzero principal value of the tensor ~ is T = BZ~/(I--Z,) (Z, is the degree of orienta- 
tion of the macromolecule in the macrovolume), and 

~*x V~g 
TYx~T ~2 

If we substitute this expression into the system of equations (8), (9), we find that motion 
along the axis of symmetry (y = 0, v.v z 0, Txx z % v.x = v.) is described by the equation 

In the inertialess approximation, integration of this equation from x = 0 to x = 
(where T = O, p = 0) determines the magnitude of o:1 in the thread: 

! Or, 
' J v ,  0~-" dx. (io) 

Taking the viscosity forces into account (on the assumption that the flow in the macro- 
volume is radial) leads to the appearance of a term in Eq. (I0) that has the order ~ov,(O)/r 
(v,(O) is the velocity of the liquid at the point x = 0). In this case, when this value is 
small compared with the terms of Eq. (i0), and as can be easily seen, this takes place when 
~ov,(0) <<a, the viscosity forces may be neglected in the examination of the flow in the 
macrovolume. It must be pointed out that in the case of a thread with constant length, the 
last inequality is stronger than the above condition of neglecting the viscosity forces in 

flow in a thread. 

The magnitude of the integral in Eq. (i0) is determined by the kinematics and the asso- 
ciated degree of extension of the macromolecules at each point of the axis of symmetry of the 
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macrovolume. 
form 

This correlation is determined by Eq. (I), which for the indicated case has the 

az ,  , az ,  z ,  av, xzo (1 - zg / (3z : ) )  
at T V , - -  9 o - - - - -  (ll) 8x (1 + 3Z~,/Z~) ax l - -Z ,  

The f i r s t  t e r m  o f  t h i s  e q u a t i o n  h a s  t h e  o r d e r  c a l c u l a t e d  f o r  a t h r e a d  o f  m a g n i t u d e  
~Z/~t, which in its turn is smaller than 9Z/~t in a thread with macromolecules "frozen" into the 
liquid and with the same kinematics of the motion. Then in accordance with (6) and (7): 

az, ~ Z E l l  = fv( l ) / l .  
Ot 

In the case of a thread with constant length, the absolute value of the second term of 
Eq. (ii) is of the order Zv,(O)/x,, where x, is the x coordinate of the point of the macro- 
volume at which the macromolecules attain their equilibrium conformation, i.e., the degree 
of extension Zo. If the flow in the macrovolume is taken to be radial, then the value x, is 
determined from the condition x~/r2<.Z/Zo~N1,/2 , i.e., the value ~f x, cannot exceed the 
length on which relaxation would occur with the macromolecules frozen" into the liquid. 

Summing up all that has been said above, we may conclude that in the case of a thread 
with constant length, when v(/) = v,(0), the absolute magnitude of the ratio of the first to 
the second term of Eq. (ii) in order of magnitude does not exceed (r/1)N ~/~. Thus, for 
sufficiently thin and long threads, i.e., when the condition (r/ON1/4<<! is fulfilled (for 
most polymers N ~/~ ~i0), the first term of Eq. (Ii) is small compared with the second term of 
this equation, and it may be neglected. That means that the process of relaxation of macro- 
molecules in the macrovolume proceeds much more rapidly than the process of extension of the 
macromolecules in the thread, i.e., the flow in the macrovolume may be considered steady at 
any instant. 

If we substitute the value 8v,/$x, found from Eq. (ii) modified in the described manner, 
into the integrand in (i0), subsequent integration leads to the following result (taking (3) 
and the fact that Zo<< 1 into account): 

~Z, %70 1 1 Z~ 1 k 3 dx, s~x=--[J(Z.(O)-i-ln(1--Z,(O)))-- (1 - -  Z , )  2 v,  3 Z2. Z . )  
0 

(!2) 

where Z,(O) is the degree of extension of the macromolecules at the point x = 0 and conse- 
quently in the thread, i.e., Z = Z,(O). 

If we assume that the flow in the macrovolume is radial, then we can show that the inte- 
gral in the last equation is of the order of magnitude 

r - - - k  ( l - - Z )  
I - - Z  v,(0) Z 1 - - Z  

F o r  a t h r e a d  o f  c o n s t a n t  l e n g t h ,  v , ( O )  i s  p r o p o r t i o n a l  t o  l ,  and  a l l  o t h e r  m a g n i t u d e s  
c o n t a i n e d  i n  t h i s  e x p r e s s i o n  a r e  i n d e p e n d e n t  o f  1 a c c o r d i n g  to  t h e  c o n d i t i o n s  o f  t h e  p r o b l e m ;  
t h e n ,  when 1 i n c r e a s e s ,  t h e  l a s t  e x p r e s s i o n  may b e  made a s  s m a l l  a s  e v e r  r e q u i r e d  c o m p a r e d  
w i t h  t h e  t e r m s  o f  Eq.  ( 4 ) .  I t  w i l l  b e  shown b e l o w  t h a t  i n  t h i s  c a s e ,  i n  t h e  t h r e a d  d Z / d t  > 0,  
and  i n  a c c o r d a n c e  w i t h  Eq.  ( 6 ) ,  Eu=v.(O)/I~AZo/(Z(1--Z)). I f  we s u b s t i t u t e  t h i s  l a s t  i n e q u a l i -  
t y  i n t o  t h e  p r e s e n t e d  e x p r e s s i o n ,  we f i n d  t h a t  t h e  r a t i o  o f  t h e  v a l u e  o f  t h e  i n t e g r a l  u n d e r  
e x a m i n a t i o n  and  o f  t h e  t e r m  BZ2/(1- -Z)  i n  Eq.  (4)  i s  n o t  o f  a l a r g e r  o r d e r  o f  m a g n i t u d e  t h a n  
(r/1)N1/", T h u s ,  w i t h  (r/1)N~/~<< 1 ,  and  w i t h  a v i e w  t o  (5)  and  ( 1 2 ) ,  Eq.  (4)  i s  t r a n s f o r m e d  
t o  t h e  f o r m  

Z 2 
- + ~ ~ (13) - -  B(Z q- l n ( 1 - - Z ) )  = - -  r 1 - - Z  

This equation unambiguously determines the correlation between the radius r of the thread and 
the degree of orientation Z of the macromolecules in the thread. It shows, in particular, 
that at the instant of disappearance of the thread (r§ the macromolecules are subjected to 
maximum extension (Z~I). Equation (13) enables us to note that with high orientation of the 
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macromolecules (I--Z<<1), and this, according to (13), always takes place when ~/(r~) >> i, 
the first term of this equation is small compared with the third term of the same equa- 
tion; this is equivalent to ~i~ being small compared with the capillary pressure in the 
thread. That means that under these conditions the process of thinning of the thread amounts 
to uniaxial extension of the polymer solution by a tensile stress equal to the capillary 
pressure a/r. Neglecting the first term of Eq. (13) enables us to integrate the system of 
equations (6), (7), (13). As a result we have 

Z = 3 - -  ~ C - -  2~Zot , 

a V C - -  2~Zot - -  2 
r = ~ ( 3 - -  V C - -  2EZot )2 ' (14) 

where C is the integration constant found from the initial condition t = 0, r = r(0), i.e., 

C = 

(3-  ]//1 + 4 (o) 
(Z 

2 
O~ 

Specifically, if we choose to begin counting the time at the instant of disappearance of 
the thread, we obtain C = 4; then t< 0 corresponds to the period of existence of the thread. 
In that case [2ZZotI<< C (taking into account that I--Z<<1), and equality (14) may be repre- 
sented in the form 

I 
Z = 1 + ~Zot. 

2 

With low orientation of the maeromolecules (Z<<l), which is always the case when a/ 
(r~) <<i, expansion into series and neglecting the terms of higher order of smallness in Eqs. 
(6) and (13) lead to the following result of integrating the system of equations under exami- 
nation: 

1 
Z = ~Zot § C, 

3 

(+ ; ~ Z o t §  , (15) r =  2ff 

where C = ~ / ( 2 B r ( O ) ) .  

In  the general  case, the s o l u t i o n  of  the system o f  equat ions (6 ) ,  (7) ,  (13) reduces to 
the integration of the equation 

l 2Z2 - - l + Z )  dz  =~Z~ 
Z + ( 1 - - Z )  ln(1 Z) d--;- (16) 

Hence it can be seen that the dynamics of the process of orientation of the macromolecules 
in thinning of the thread does not depend on the surface tension of the polymer solution. 
Moreover, by direct check we can convince ourselves that 1/3< (ZZo)-idZ/dt< 1/2, i.e., the 
value dZ/dt lies within the limits determined by the asymptotic solutions presented above. 
In the case of a thread with constant length this enables us to estimate the speed of the 
liquid at the point xl = Z with the aid of (6): 

v ( l )  _ E n , .  ~ ~Zo 
l .Z(1 - - Z )  (17) 

Then t he  above  c o n d i t i o n  o f  n e g l e c t i n g  t he  v i s c o s i t y  f o r c e s  in  f low in  a macrovolume may be 
represented in the form 

~oXZo ~ 1. (18) 
~Z (1 - -  Z) 

On the  b a s i s  o f  the  s o l u t i o n  found we can show t h a t  i n  the  case  Z = c o n s t ,  t h e  f o r c e s  
o f  i n e r t i a  in  f low,  b o t h  i n  the  t h r e a d  and i n  the  macrovolume,  may be n e g l e c t e d  when p v a ( Z ) /  
2<< a / r ,  which ,  in  a c c o r d a n c e  w i t h  (13) and (17) ,  i s  e q u i v a l e n t  to  

772 



uC+) i ~.+(/+#r ] z  

2s / q5 

oL 0 f 2 X20 ~- ~ 0 

Fig, 3. Dependences of the 
change of the degree of exten- 
sion of the maeromolecules and 
of the radius of the thread on 
time (curves i, 2); curves 3, 4 
correspond to the dependences 
Z = Z(t) describing the be- 
havior of macromolecules in two 
limiting cases (Z << i and 
I--Z << i); curve 5 represents 
the dependence of the change of 
speed of the liquid at the 
border of the thread. 

(~ZJ) ~ 
~Z~(1--Z) ~ 1. (19) 

If we adopt for a thread of solution of polyoxyethylene WSR-301 in water with a concen- 
tration 0 01% that p = 1 g.cm -3 = �9 , ~0 = 10-2 P, X = 5.102 sec-:, Zo = 5"10 -3 , ~ ) 70 dyn.cm- , 

= 0�9 cm, B = 105 dyn-cm -2 (then, in accordance with (17), v(1)~ 2 cm-sec- , the inequali- 
ties (18) and (19) may be represented as follows: Z(I--Z)>>i0 -4, Z4(I--Z)>>I0 -6. These inequali- 
ties determine the range of application of the suggested theory for Z = const~ The obtained 
results also remain correct for threads of variable length if the rate of dilution of the 
macrovolumes 2U obeys the condition 

1 1_] ~ r N,/~ 
v ( 0  l ' 

which is indispensable for neglecting the term ~Z,/~t in Eq. (ii) and the integral in equality 
(12), and, if possible, for neglecting the viscosity forces and the forces of inertia in flow 
in a macrovolume (which occurs, e.g., when conditions (18), (19) are fulfilled and when U = 
const> 0). Figure 3 shows the results of the numerical solution of the equations describing 
the behavior of the thread of polymer solution in the general case (curves i, 2, 5), and also 
the results of the asymptotic investigation of the problem (curves 3, 4). The beginning of 
counting the time in the given case was chosen at the instant corresponding to the formal 
situation Z = 0, r = =. It can be seen from the figure that the asymptotic solutions de- 
scribe fairly well the process of orientation of the macromolecules under conditions that go 
far beyond the limits of the assumptions that were made; in p~actical calculations this makes 
it possible to use Eqs. (14), (15) jointly with Eq. (13), which establishes a correlation be- 
tween Z and r. 

The obtained results agree qualitatively with the experimental data for solutions of 
polyoxyethylene and polyacrylamide in a wide range of concentrations [I]. Instead of the 
viscosity of the solvent Po, which figures in Hinch's theory, we used in the calculations the 
greatest Newtonian viscosity of the polymer solution; this enabled us to take into account the 
interaction of the macromolecules in the case of highly concentrated solutions. 

In conclusion, it must be pointed out that the thread of polymer solution is stable in 
relation to "rapid" perturbations of the radius (the time of development of the perturbation 
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At<< Z/(%Zo)), since, as can be shown, in this case the force tensioning the thread F = 
~r~ + ~r=T increases at the place where the thread is thinned, and decreases at the place 
where it is wider (see [9, I0]). 

NO TAT IO N 

t, time; r, radius of the thread; ~, half the length of the thread; x:, x2, x3, Cartesian 
coordinates (Fig. 2); x, y, @ , cylindrical coordinates (Fig. 2); v, flow velocity of the 
liquid in the coordinate system xl, x2, x3; v,, flow velocity of the liquid in the coordinate 
system x, y, @ ; U, half-rate of dilution of macrovolumes; ~, surface tension; <zz>, second 
moment of extension of the macromolecule; z = Tr(<zz>)~/2, distance between the ends of the 
macromolecule; b, length of the Kuhn segment; N, number of Kuhn segments in the macromolecule; 
zo = b~, size of the macromolecule in equilibrium conformation; Z = z/(Nb), degree of orien- 
tation of the macromolecule in the thread; Z,, degree of orientation of the macromolecule in 
the macrovolume; Zo = zo/(Nb); ~, rotation tensor; E, strain rate tensor; o, stress tensor; 
T, excess stress tensor; p, pressure; n, number of molecules in unit volume; k, Boltzmann 
constant; T, absolute temperature; z-3~T/(Nb2), elasticity constant of the macromolecule; ~o, 
viscosity of the solvent; ~, effective longitudinal viscosity; %=• ~ n• 2 ; 
T = BZ,/(I--Z,); C, integration constant; F, tension of the thread. 
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